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Overview

@ We study the Helmholtz equation

(A = k(x)))u(x) = f(x),  k(x)=—+

mostly on rectangular domains with absorbing layers (e.g. PML).
@ Three ideas to improve solvers

» An FD method very small numerical dispersion on coarse meshes
» Improved two-grid and multigrid methods
» Domain decomposition

@ Justification using analytical and numerical results

@ A hybrid solver
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Numerical dispersion

Numerical dispersion leads to propagating wave solutions e’$Fp% with
wavenumber errors

[€rp(0)]] # k.

Leads to large errors in solution:

exact solution and solution with 1 % phase slowness error
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Relative wave number errors should be very small, e.g.
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Discretizations for small numerical dispersion

High-order finite elements (on regular and unstructured meshes)

High-order finite differences with long stencils
3 x 3 x 3 cubic stencils (compact stencil).
» QS-FEM (2-D), is optimal in 2-D, (Babuska et al. 1995)
» 6-th order FD (Sutmann, 2007; Turkel et al., 2013)
» Optimized FD (Jo, Shin, Suh 1998; Operto et al 2007; ...)
e Plan:

» A new optimized compact stencil method
» Comparison of phase errors (except unstructured FE)
» Geometrical optics analysis and numerical example
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Finite difference Helmholtz operators, constant k

Let (hZ)9 be our mesh, and x = ha, with a € Z9 the meshpoints. A
compact stencil discrete Helmholtz operator P has matrix elements

1
Pas = 3fa-p(hk),  a,B €L

for some functions £, that are nonzero for v € {—1,0,1}¢.

Acts multiplicatively on plane wave e*¢. Factor is given by the symbol

P(&)=h"2) £ (hk)e™*<.

Assumption The symbol P(&) is like that of the continuous operator
H(€) = £€2 — k2, in the sense that

(i) P(&) has a zero-set Zp that is the boundary of a convex set
containing the origin

(i) % #0on Zp

Chris Stolk (Univ. of Amsterdam) The high-frequency Helmholtz equation ICERM, 11/9/2017

5/29



The limit x — o0
Theorem (S., cf. Lighthill 1960) The outgoing solution to Pu = § satisfies

e e ()
— 2n) T e i K(E) T2
vbd =G e T p ae e

where d is dimension, K(§), £ € Zp is (generalized) Gaussian curvature of
Zp and &1 (x) denote the maxima arg maxgcz, £x - &.

S 4 O|x||V2-9/2),

Consequences

e Zp should be close to the set ||£|| = k to minimize phase errors
@ To obtain (close to) correct amplitudes, we solve

Pv:éé, u:CA)v

where the order zero operators @ and O have matrix elements and
symbols

Gop = Ba-p(hk), Q&) =D &(hk)e™*,  Q similar
Y

Q9Q©) ~ L
such that TOPOE(E) cezp R 5E-
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A parameterized finite difference operator

We define a discrete operator with 5 parameter functions a; = aj(hk)

27
P=-Dy® 2 —D,y 2D, o2 — k2O
where
Doc=h?[-1 2 —1]
oo0oo0 _fo10] , 101
I(2):a4010+75101++000
00 0 010 10 1

18 = similar in 3-D with coefficients a1, a, a3
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Optimal coefficients

b a’J(

k) depends on

hk

2 ppw

bk — L \ia Hermite inter

polation on 9 control points.

@ carefully minimize phase errors at approximately 400 angles and 40 values of

% for > 2.5 points per wavelength
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0.0000
0.0500
0.1000
0.1500
0.2000
0.2500
0.3000
0.3500
0.4000

0.635413
0.635102
0.634166
0.632093
0.628341

0.603680
0.588498

-0.000228
-0.015578
-0.034804
-0.054496
-0.103457
-0.133896
-0.183988
-0.255991
-0.356326

0.210638
0.210152
0.208167
0.205348
0.201605
0.197423
0.192414
0.186819
0.180737

0.016303
-0.023424
-0.043396
-0.065935
-0.069385
-0.098212
-0.115398
-0.120930
-0.132266

0.172254
0.171912
0.171146
0.170031
0.169740
0.169475
0.168690
0.167581
0.166640

-0.014072
-0.005802
-0.012462
-0.022145
0.001893
-0.002559
-0.005589
-0.015564
-0.001852

0.710633
0.709821
0.707374
0.703359
0.698813
0.694726
0.692615
0.694109
0.700902

-0.006278  0.245303
-0.047764  0.245148
-0.070981  0.244762
-0.088202  0.245160
-0.092327  0.245687
-0.066617 0.246454
-0.011177  0.247743
0.077605  0.250098
0.199685  0.254352

0.019576
0.021398
0.007493
0.009937
0.012201
0.016791
0.029213
0.059733
0.106049

@ Weset Q = Q = Q and also find coefficients for

Qona
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Comparison of relative phase errors

phase slowness errors for various 3-D schemes

phase slowness error

0 0.1 0.2 0.3
kh __ 1

2T Nppw
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—~— FD6

FD8
OPT4

—-—- CHO6
—#— QS-FEM(2-D)
—a— IOFD(.

IOFD(

2-D)
3-D)

QS-FEM (2-D)(Babuska et al., 1995) and IOFD (2-D and 3-D) have the smallest

dispersion errors with few points per wavelength.
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Classical geometrical optics

@ Consider smoothly varying k (c is C2 or smoother)

@ In classical geometrical objects the ansatz is u = A(x)e™®*)
w? jw® 2 2 1 P(x
(-4 = )A(x)e™ ) = [w A ((v¢) -~ C2> +w(...)+ O(1)|e™

@ In terms of the symbol H(x, &) = &2 — ﬁ we find the equations

A(x, Vo(x)) =0 (eikonal equation)

0A 82H
;(Lg’w)ja (d|v Lyo)A+(t—1/2) Z pe (%J (transport eq.)

where (LFI,¢)J- = g—g(x, V&) (Duistermaat, 1996)

@ Point source solutions, are obtained by choosing appropriate initial
conditions for A and ®.
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Geometrical optics for discrete Helmholtz operators

@ Asymptotics for w — 0o, wh = constant (variable k)
@ The symbol becomes P(x,&) = h—2 > £, (hk(x))e™-¢
@ We consider the discretization

Pas = %fa,g(hk((l — t)ah + tBh)),

for t € {0,1/2,1}. This is the t-quantization of P(x,¢)

Op,(P(x,&))u(x def (o)~ P(x —x), €)' N y(y) d
(P en 3 [ Pttty 9 Culy) de

y€e(hz)4

@ Using Taylor expansions of the phase functions the same eikonal and
transport equations in terms of P(x, &) are obtained.
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Variable k results

o Correct geometrical optics phase and amplitude result if
(i) P(x,&) has same zeros as H(x, &) = €2 — k(x)?

(i) t =1/2is used in the quantization
A def

(i) @ = Q= Q and Q(¢) satisfies
Q(¢)° -

10P/OE(E) ] lecz, 2K
(same equation as before)

@ Small phase errors (proportional to distance from source) and
amplitude errors result if the equalities are satisfied only approximately

@ The dispersion minimizing scheme can provide accurate solutions if
the velocity c(x) is smooth
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Simulations at constant k (2-D)

Polar plots FD2, 10ppw, 20wl IOFD, 6ppw, 500wl

polar plot FD2 at 10 ppw polar plot IOFD at 6 ppw
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(spline CHO6, 4ppw, 500wl IOFD, 3ppw, 500w
interpolation) — :

IOFD, 2.5ppw, 100wl

polar plot I0FD at 2.5 ppw.
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Smoothed Marmousi example
Compare a IOFD solution at 6 ppw with a FE4 solution 12 ppw.

Velocity: Solution at 50 Hz
SmOOthed solution at 50 Hz
Mar
: = 1000 i
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Local error mostly < 1 %
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Multigrid for Helmholtz equations

@ Multigrid was developed for elliptic problems were it is highly efficient

@ For time-harmonic problems using standard multigrid, a relatively fine
discretization 210 points per wavelength at the coarse level is required

o Elliptic and shifted-Laplacian preconditioners use multigrid:
The multigrid scheme of a complex-shifted operator acts as a
preconditioner. (Bayliss et al, 1983; Erlannga, Oosterlee, Vuik, 2004; Calandra,
Gratton et al., 2013; ...). Typically requires many iterations.

o ldea (S. et al 2014): Optimized discretizations on a coarse mesh can be
used to speed up the solution process for a finer mesh discretization.
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Multigrid with optimized coarse discretizations

o Plan today:
» Local Fourier analysis to choose parameters and compare
methods
» analyze weakly damped Helmholtz operators on infinite domain
H=—A—((1+ai)k)?
e.g. a = 0.01 corresponds to a damping of 6.28%/cycle
» A numerical example with damping only at the boundary
@ Two-grid method for an approximate solution was obtained by testing
different parameter choices using local Fourier analysis:
» Simple iterative solver (smoother) (3 times w-Jacobi, w ~ 0.7)
» Compute residual, restrict to coarse mesh, solve on coarse mesh,
interpolate back to fine mesh
» Simple iterative solver again
» Apply this as a preconditioner for GMRES
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Local Fourier analysis of the two-grid method

Local Fourier analysis is a standard method in multigrid analysis
(Trottenberg et al., 2001)

Let h be the fine mesh distance, 2h coarse mesh distance.
We consider Fourier-Bloch waves on cells of size 2h

u(x1 + j12h, xp + jo2h) = ei(jlfl+j2£2)u(x1,xz).

Operators are block diagonal on a Fourier-Bloch basis

In such a basis, the action of multigrid on the residual is given by 4 x 4
matrices

MiP(€) = S(£) KR"(xi)S ()™
KZM(€) = 1 — Ru(€) (Peoarse20(€)) ™" R(€) Peine,n(€)

where S(§) is the action of one iteration of w-Jacobi on the residual,
R,,T(g) and Rjy(&) are for interpolation and restriction and Peoarse 21 () and
Pfine,n (&) are Helmholtz operator symbols.
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Two-grid convergence factor

Two-grid convergence factor

p= sup  SpectralRadius(M?"(¢)).

66[727‘;,7’27‘;,7 2

Numerical computation of convergence factors (S. et al, 2014)

FD5-optimized matching FD5 FD5-Galerkin
coarse | a = o= coarse | a = a=
ppw 1.25e-3  0.005 ppw 0.005 0.02
3 0.634 0.439 6 >1 >1
35 0.228 0.204 7 >1 >1
4 0.170 0.156 8 >1 0.896
6 0.079 0.079 10 >1 0.588
8 0.067 0.067 12 >1 0.415

(IOFD at fine and coarse levels slightly outperforms FD5-optimized.)
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Two-grid iteration count
Iterations for residual reduction by 10~® with “sponge” bdy conditions.

2-D sllce of SEG-EAGE model

of the SEG-EAGE sall model

4000

_ e
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constant salt model
2400 x 2400 | 2700 x 836
ppw fine | freq its freq  its

5 480 29 60 18
6 400 8 50 8
8 300 5 37.5 6
10 240 4 30 5

@ Multigrid with optimized FD at the coarse level works, downto ~ 3 ppw at
the coarse level.

@ However, in 3-D, the coarse level linear system can remain large
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Double sweep domain decomposition

Get solution by solving a sequence of
subdomain problems

artificial boundaries should not introduce N
reflections

coupling s.t. incoming waves in domain j

are outgoing waves in domains j +1

Schwartz type methods involve coupling through numerical absorbing
boundary conditions (Benamou, Despres 1997; Gander et al., 2007; ...)

Sweeping methods (Engquist, Ying, 2010) use very thin subdomains with
PML on one side

Idea: (S., 2013, 2017)
» subdomains with PML layers on both sides (cf. Schadle, 2007)

» coupling via source terms involving single and double potentials
» Forward and backward sweep with shifted domain boundaries
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Domain decomposition method in 1-D
Robin boundary value problem

Au=ffor0<x <L, A= -0y — k?,
Oxu(0) + iku(0) = hy, —0xu(L) + iku(L) = ho.

Let 0 = by < by < ... < by = L be domain boundaries, and AY) the Helmholtz
operator on [bj_1 — €, bj + €] with Robin boundary conditions as above.

Upward sweep

Q Forj=1,2,...,J, solve v{) from
pU),0) — elty 1 bf + Tf)v(j_l)

0,6y _ § 0 . - ifj=1
+ PU=DH(bj_y — x)vU=1) 4+ H(bj_; — x)PU=DvU=1)  otherwise

@ Define an approximate solution v(x) = ijl leetb;—1,b1(X) v (x)
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Domain decomposition method in 1-D (cont'd)

Downward sweep:
@ Define new domain boundaries 0 = Eo < 131 <...< EJ = L, such
that b; # by for any j, k.
@ The downward sweep acts on the residual g = f — Pv to produce an
approximate solution w to Pg = w.
The “double sweep” approximate solution is u = v + w.

@ The downward sweep is similar to the upward sweep.
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Remarks on the 1-D problem

@ The source transfer term T, vU~1) is a sum of single and double
potentials

Tg)v(f—l) — PU_l)H(bj_l —x)vih 4 H(bj_1 — x)PU=1y(—1)
= ad(x — bj_1) + bd'(x — bj_1)

and causes only forward propagating waves
@ The solution formula for the 1-D Helmholtz equation gives that

v(x) = 2’/{/0 eiX(X_s)f(s) ds

. by '
+ ﬁ e kx=9)f(s) ds for x € (bj_1, by)

u(x) = exact solution
i

X : L
= — eiX(X*s)f(s) ds + L ef’.k(xfs)f(s) ds
2k Jy

2k /.
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Discretization and extension to 3-D

@ The above description is straightforwardly extended to the discrete
2-D and 3-D cases (with domain decomposition along the x; axis)

@ In this case the domain boundaries b; are chosen halfway between
grid points, and b; = b; + 1 or b; = b; — 1.
@ There is a two grid-cell overlap between subdomains j and j + 1.

@ At the internal boundaries, PML layers are added to simulate
absorbing boundaries. PML means that

9 is replaced b L 0
— i _
Ox1 P Y1+ iw=lo(x1) Ox
with o1 increasing quadratically into the x;-boundary layers.

@ At the external boundaries, PML layers, or classical damping layers
can be used.

e upward and downwardsweep can be done in parallel (X-sweep)
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2-D Marmousi example

aaaaaaaaaaaaaaaa fomi(2x) = 50)

N Ny h(m) | 2z (H2) |\ —==5T30 T 100 | 300
600 x 212 | 16 125 4] 5] 6

1175 < 400 | 8 25 506 | 7

2325 x 775 | & 50 61 6] 7| 9

4625 x 1525 | 2 100 66| 7| 8

9225 x 3025 | 1 200 718 9 | &

Results from S., 2013.
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A hybrid solver

o ldea (S., 2017): In the two-grid method, the coarse level solver can be
replaced by a domain decomposition preconditioner.
o Parallel 3-D implementation
» Linux cluster with 64 GB per node, 16 cores/node, up to 16
nodes at surfsara.nl.
» Cartesian mesh decomposition for multigrid
» Subdomain solves done on 8 to 32 cores using MUMPS
» Subdomains must be solved consecutively: Pipeline solution
process to keep all nodes busy
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Example: SEG-EAGE Salt model

frequency 6.25 7.87 9.91 125
size 338x338x106 | 426x426x132 | 536x536x166 | 676x676x210
# dof 1.3-107 2.5-107 5.0 - 107 1.0-108
cores 32 64 128 256
# of rhs. 1 2 4 8
iterations 12 12 13 15
time/rhs. 26 35 45 73
Fast compared to methods in the literature!
ICERM, 11/9/2017
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Discussion

o Sizeable efficiency gains in some Helmholtz problems

@ Variants of sweeping domain decomposition have been applied to
finite element discretizations, EM and elastic waves (Tsuji et al. 2014;
Vion, Geuzaine, 2014; )

The key point is the reduced memory use compared to the direct
method.

@ Sweeping domain decomposition remains difficult to parallellize
o Multigrid with optimized finite differences can combine
» fine sampling for accurate discretization
» very coarse sampling in the costly part of the solver
Direct generalization to FE fails.
Can we extend this to more general meshes?
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